[Press Release] Fishing a line coupled with clockwork for daily rhythm

Molecular mechanism of the interplay of clock proteins for generating a circadian oscillation
 
Organisms on this planet, including human beings, exhibit a biological rhythm that repeats about every 24 h to adapt to the daily environmental alteration caused by the rotation of the earth. This circadian rhythm is regulated by a set of biomolecules working as a biological clock. In cyanobacteria (or blue-green algae), the circadian rhythm is controlled by the assembly and disassembly of three clock proteins, namely, KaiA, KaiB, and KaiC. KaiC forms a hexameric-ring structure and plays a central role in the clock oscillator, which works by consuming ATP, the energy currency molecule of the cell. However, it remains unknown how the clock proteins work autonomously for generating the circadian oscillation.
 
The research groups at Graduate School of Pharmaceutical Sciences of Nagoya City University and Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) of National Institutes of Natural Sciences investigated this mechanism by native mass spectrometry and nuclear magnetic resonance spectroscopy. They found that KaiC degrades ATP into ADP within its ring structure, which triggers the leaping out of the tail of KaiC from the ring. KaiA captures the exposed KaiC tail, facilitating ADP release from the ring, thereby setting the clock ahead.
 
This “fishing a line” mechanism explains the clockwork interplay of the KaiA and KaiC proteins. Elucidating this mechanism will provide deep insights into not only the circadian clock in cyanobacteria but also that in plants, animals, and humans under physiological and pathological conditions, including jet lag and sleep disorders.
 

 
Fig. Circadian clockwork
 

Published online Date

June 3, 2019
 

Journal

Journal: Life Science Alliance
 
Title: ATP hydrolysis by KaiC promotes its KaiA binding in the cyanobacterial circadian clock system
 
Author: Yasuhiro Yunoki, Kentaro Ishii, Maho Yagi-Utsumi, Reiko Murakami, Susumu Uchiyama, Hirokazu Yagi, Koichi Kato
 
Article URL: https://www.life-science-alliance.org/content/2/3/e201900368
 
Researcher URL: http://www.phar.nagoya-cu.ac.jp/hp/sbk/index_e.html
 
DOI: 10.26508/lsa.201900368
 

Contact

Koichi KATO
Graduate School of Pharmaceutical Sciences, Nagoya City University
3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
TEL:+81-52-836-3447
FAX:+81-52-836-3447
E-mail:kkato[at]phar.nagoya-cu.ac.jp
 
Hirokazu YAGI
Graduate School of Pharmaceutical Sciences, Nagoya City University
3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
TEL:+81-52-836-3448
FAX:+81-52-836-3448
E-mail:hyagi[at]phar.nagoya-cu.ac.jp

Back to top of page